Systems Without Mobiles

In this fourth entry about using structure to teach algebra, I’d like to focus on how we moved our kids from the picture-based systems to using traditional symbols. We focused on systems of two equations because even though they could solve systems involving more than two equations using emojis and mobiles, moving to traditional symbols could be more intense.

We began with systems that could have been represented by mobiles.

system1

Many students even drew their own mobiles using x’s and y’s. Others went right to the equation 2x + 5y = 4x + 2y and came up with 3y = 2x. Again, they used this relationship as a direct substitution. Some substituted into the top equation to get 3y + 5y = 48, while others transformed the bottom equation into 6y + 2y = 48. Once they were able to solve for y, they were able to solve for x.

But we didn’t just want systems that immediately transformed into mobiles, so we also gave them ones like this:

system3

We were quite curious about what they would do with this kind of system. Our instinct and experience would be to solve the bottom equation for y, but that’s not what the kids did. They added 3 to both sides of the bottom equation so that both equations were equal to 22. This left them with the equation 2x + 3y = 3x + y + 3, or 2y = x + 3. There’s no direct substitution here, though, so kids needed to reason further. Some used y = 0.5x + 1.5 while others said that x = 2y – 3, which led them to 2x = 4y – 6. Again, they did this on their own, without any direct teaching from us.

We also gave them systems like this one, which seemed pretty obvious to us:

system4

Just about every student was able to come up with the equation 3x – 2 = 4x + 1, but lots of kids weren’t sure what to do next because the equation didn’t contain x & y. Those students needed a bit of prompting until they realized that they could use that equation to solve for x.

And then there was this one:

system5

It doesn’t look all that different from the others. Most students added 24 to the bottom equation and proceeded as above. But I had one student who decided to multiply the bottom equation by -5. What?! When I asked him why he decided to multiply, he said that he wanted to make the bottom equation equal 20 and multiplying by -5 would do that. Fair enough.

The entire journey, from emoji’s to mobiles to traditional symbols took us to a completely different substitution method for solving systems. Had we not been open to following our students’ lead, we never would have learned these ideas that were completely intuitive to them. Remember, these weren’t “honors” kids, but they were willing to try, to think, and to take risks. And we gave them the space and time to play with the ideas.

Leave a comment

Filed under #CCSS, BMTN, teaching

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s